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The solution of ordinary differential equations by the means of Phase Integral Methods 
is eminently suited for an interactive computational system with real time graphics. Wc 
describe a code devised for this purpose and illustrate its use. 

I. INTRODUCTION 

The power and simplicity of Phase Integral Methods for the approximate solution 
of difYerentia1 equations make them a common tool in many branches of physics, 
and a particularly useful one in plasma physics, where the equations are often too 
cumbersome to solve by standard exact methods. Many of the differential equations 
of interest can be put in the form 

In these cases, the existence of solutions and the approximate complex eigenfrequencies 
w can often be determined by phase integral methods. In this work we show that phase 
integral solutions of these equations are efficiently obtained by interactive compu- 
tation? a mode of analysis particularly suited for these problems since pattern recog- 
nition and guesswork are needed as well as complicated calculations. 

In Section II we briefly review the Method of Phase Integrals as it applies to the 
restricted problem of determining whether solutions of Eq. (1) exist, and if so, 
finding the associated eigenfrequencies. 

Section III consists of a general description of the code developed for this purpose 
along with examples of its use. 

II. THE METHOD OF PHASE INTEGRALS 

A. Stokes Structure 

We take Eq. (1) as standard form for the differential equation to be examined. 
The complex frequency, w, generally plays the role of an unknown eigenvalue, and 
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z = x + iy is a complex variable. The physical problem is initially defined on the 
real axis and the equation has been analytically continued into the complex plane. 

Briefly, the WKBJ approximate solutions of Eq. (1) (so named after Wentzel, 
Kramers, Brillouin, and Jeffreys) [2] take the form 

#+ = Q-l14 exp ( fi j’ Qllz a?), (2) 

and provided that 

a general solution of Eq. (1) can be approximated by 

* = a+#+ + a-#-. (4) 

The solutions #+ are local, not global solutions of Eq. (1). Clearly, inequality (3) 
is not valid in the vicinity of a zero of Q(z, w), commonly called a turning point. 
Aside from this, however, & are not approximations of a continuous solution of 
Eq. (1) in the whole z plane; i.e., if # is to approximate a continuous solution of 
Eq. (I), then the coefficients a+, a- are not fixed over the whole z plane. The Method 
of Phase Integrals consists in relating, for a given solution of Eq. (I), the WKBJ 
approximation in one region of the z plane to that in another. 

These regions are separated by the so-called Stokes and anti-Stokes lines associated 
with Q(z, w), and thus the qualitative properties of the solution are determined once 
these lines are known. The Stokes (anti-Stokes) lines associated with Q(z, w) are paths 
in the z plane, emanating from zeros or singularities of Q(z, w), along which 
S Qlp(z, w) clz is imaginary (real). We review first the characteristic properties of 
these lines and then, in Section IIB, the way in which they determine the global 
nature of a WKBJ solution. We introduce a method of determining these lines which 
does not involve time consuming integration. Define a local anti-Stokes line to be, 
for any z,, , an infinitesimal path dz emanating from zO along which Q1js dz is real. 
Along this path j #+ 1 is essentially constant; i.e., the solutions are oscillatory. If 
Q<zo 3 w) is finite and well behaved, the local anti-Stokes line is given by setting dz 
equal to a real number times i-Q(~,,-l/~; i.e., from z, there issue two oppositely 
directed lines. Points at which Q(zO) is zero or infinity must be analyzed with more 
care. When the zero is first order, we may in general write Q(z) = A(z)@ - z,), and 
determine the direction of local anti-Stokes lines from the requirement that Q1je dz = 
4z,,)lls dz3P 3 / A(zO)I1fl exp[(iO/2)] dz”l” be real. Since dz is then proportional to 
exp[i(--8 + 2n~-)/3] with II integer, we find that three anti-Stokes lines emanate from 
z, . Similarly, one finds that from a double root there issue four anti-Stokes lines, 
from a simple pole a single line, etc. It is thus quite easy to read the locations of zeros, 
poles, etc., of a function from a plot of the z plane upon which are displayed the local 
anti-Stokes lines, which we will refer to as a Stokes diagram. An example is shown 
in Fig. 1 for a function Q which possesses simple zeros in the first and third quadrants, 
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Frc. 1. Plot of the local anti-Stokes structure for Q = (z - q)(z - z2)(z - zs)“/(z - z$ with 
z1 = 1 + i, z2 = - 1 - i, z3 = 1 - i, and z4 = -1 + i. The global anti-Stokes Iines have alsc 
been added. 

a double zero in the fourth quadrant, a pole in the second quadrant, and no other zeros 
or singularities. In referring to Stokes diagrams, we wili refer to both zeros and 
singularities of Q[z) as singular points of the diagram since it is the function Q1je 
which is relevant in this diagram. 

A display of this nature allows a qualitative survey of the analytic structure of a 
function, without the numerical complication of an actual search for roots. It is 
also more convenient than an integral method utilizing closed contours such as that 
due to Nyquist [2]. 

Using the local anti-Stokes lines as guides, we can form global, continuous anti- 
Stokes lines for those particular lines which emerge from the singular points of the 
Stokes plot, and these lines have been added to Fig. 1. Along the global anti-Stokes 
lines the functions $+ are, within the validity of the WKBJ approximation, of constant 
amplitude, i.e., oscillatory. In performing these connections, keep in mind that away 
from the singular points, the lines cannot meet or cross. We similarly define local and 
global Stokes lines to be lines for which the integral S @I2 dz is imaginary. Along 
the Stokes lines the WKBJ solutions are exponentially increasing or decreasing with 
fixed phase. Except at singular points the Stokes and anti-Stokes lines are orthogonal, 
The global anti-Stokes and Stokes lines which are attached to the singular points of 
the Stokes diagram, along with the Riemann cut lines, describe the global properties 
of the WKBJ solutions, 
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As an illustration of a more complicated structure, in Fig. 2 are shown the local 
anti-Stokes lines associated with the plasma dispersion function [3] Z(z), defined as 
the Hilbert transform of the gaussian, Z(z) = ~-l/~ JTm dt exp(-P)(t - z)-1 for 
Im z > 0 and as the analytic continuation of this for Im z < 0. This function is 
quite complicated in the lower half plane. During operation of the code, the local 
anti-Stokes lines of any region can be examined using a magnification limited only 
by the numerical accuracy with which Q(z, W) is computed, thus allowing the exa- 
mination of local analytic properties of the differential equation. Thus, detail such 
as is shown in Fig. 2 is easily investigated. 
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fiG. 2. The local anti-Stokes plot for the plasma dispersion function. This function exhibits 

great complexity in the lower half plane. The code permits a magnified view of any region of the 
Stokes diagram, thus allowing examination of detailed analytic structure if desired. 

B. Connection Formulas 

The canonical Stokes structure for a solution associated with a pair of real turning 
points is shown in Fig. 3. For illustration, we have chosen Q = L/(z~ + 1) - w  
which has turning points located at fv = &(L/w - l)l/“, which are located on 
the real axis provided w  is real and between zero and L. Note that for 1 z j large 
Q ---f -w, which means that the local anti-Stokes lines all point in the same direction; 
vertical for w  real and positive. In addition to the anti-Stokes lines emanating from 
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FIG. 3. The canonical Stokes structure for an equation with an attractive potential with two 
real turning points. Shown are the global anti-Stokes lines (solid), Stokes lines (dotted), and branch 
cuts (wavy). 

the turning points, we have added the Stokes lines (broken lines). There are three 
separate regions of the reaI axis where the WKBJ expression can give a good approxi- 
mation to a solution, and these regions are isolated from one another by the turning 
points. 

In the notation of Heading, ignoring the slow Q- Ii4 dependence, a WKBJ solution 
is denoted by 

where the subscript s(d) indicates that the solution is subdominant (dominant); 
i.e., exponentially decreasing (increasing) for increasing 1 z - u 1 in a particular region 
of the -7 plane, bounded by Stokes and anti-Stokes lines. The point I? is taken to be a 
nearby turning point to which the dominancy and subdominancy refers. Here 
increasing I z - u I is made precise by specifying that it signify following the local 
Stokes lines in the direction that 1 z - u 1 increases. The two independent local WiK 
approximate solutions of Eq. (1) in this notation are given by (z, U) and co, z). CZeariy 
if (z, a) is subdominant, then (v, z) is dominant. It is readily verified that upon crossing 
an anti-Stokes line these two solutions reverse character. 

The rules given by Heading for obtaining a globally defined WKBJ solution which 
corresponds to the approximation of a single solution of the differential equation 
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are the following. Begin with a particular solution in one region of the z plane, 
choosing that combination of subdominant and dominant solutions which gives 
the desired boundary conditions in this region. The global solution is obtained by 
continuing this solution through the whole z plane effecting the following changes: 

(1) If a, and a, are respectively the coefficients of the dominant and subdominant 
terms of a solution, then upon crossing a Stokes line in counterclockwise sense a, 
must be replaced by a, + Tad where T is called the Stokes constant. When the 
Stokes line originates at a first order zero, T = +i. 

(2) Upon crossing a cut in a counter clockwise sense, the cut originating from 
a first order zero of Q at the point v, we have 

(0, 2) - -i(z, v) 

(z, v) -+ -i(v, z). 
(6) 

The property of dominancy or subdominancy is preserved in this process. 

(3) Upon crossing an anti-Stokes line, subdominant solutions become dominant 
and vice verse. 

These rules describe the results of analytically continuing the WKBJ solutions 
around the branch points and of integrating Eq. (1) through the turning points, 
in the neighborhood of which the WKBJ solutions are invalid, but the function Q 
is dominated by its behavior near the turning point and the integration can be done 
directly. The connection of the WKBJ solutions can also be carried out at some 
distancefrom the turning point in the complex plane where thesesolutions arevalid. [4] 
In this manner we can pass from region to region across the cuts and Stokes lines 
emanating from the turning points. Beginning with any combination of dominant 
and subdominant solutions in one region, this process leads to a globally defined 
single valued approximate solution of Eq. (1). Although it would appear that the 
first rule gives rise to a discontinuous solution, this is not the case. At the Stokes line, 
in the presence of a dominant solution, the discontinuity produced is small compared 
to the error due to the WKBJ approximation itself. As one continues further away 
from the Stokes line, however, the subdominant term will begin to be important, 
and the modified coefficient is the correct one. 

We illustrate this process for the case of Fig. 3. Assuming that we wish a solution 
which is exponentially decreasing for x + co, we begin by taking $ to be the sub- 
dominant function (z, v), in region 1 of Fig. 3. In region 2 this function becomes 
dominant, so that $I = (z, 2~)~ . Passing into region 3 we find the continuation 

7) = (z, v)d - i(v, z), . (7) 

To proceed further we attach the solution to the left hand turning point, using the 
identity 

(z, 4 = (z, a)@, 4. (8) 
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finding also in region 3 

tj~ = (z, -D)~(--u, D) - i(-0, z),(u, -vj. (9) 

Note that the Stokes line connecting the two poles is not attached to the turning points 
of the solution and has no effect on the continuation. 

To pass into region 4 we cross a Stokes line in the counter clockwise direction and 
thus find 

$b = -i[(u, -0) + (-zl, u)](-u, z), + (-7.7, u)(z, -& 

and thus in region 5 

(10) 

tj!l = -i[(u, -u) + (-II, u)](-u, Z)d i (--?I, u)(z, -&. 

Crossing the cut into region 6 we find 

(11) 

$ = Ku, 4 + (-0, u)l(z, +l)d + ii-u, a-0, z)s . (12) 

In any case, whether we push the cut upward, letting region 5 include the real axis, 
or leave it as shown in Fig. 4, the connection formula remains the same. Requiring 
that the solution tend to zero at x -+ - co? we set the coefficient of the dorn~~a~t 
solution equal to zero, or 

(u, 4) = -(--z’, 0) (13) 

which has the solution 

for H integer. This phase integral condition determines the eigenfrequency LU of 
Eq. (1) and is identical to the Bohr-Sommerfield condition in quantum mechanics IS]. 

The accuracy of the WKBJ determination of an eigenvalue is: in practice, usually 
much greater than an evaluation of Eq. (3) would lead one to expect. An extreme case 
is the harmonic oscillator potential, Q = w  - x2, for which the WKBJ det~rl~inat~on 
leads to the exact expression OJ = 212 + 1, n integer. For many problems the potential 
well is approximately that of a harmonic oscillator and thus the eigenvalue is very 
accurately determined. Equation (3) is misleading since near the turning points, 
where it is certainly not satisfied, the derivation of the eigenvalue condition makes 
use of the exact (Airy function) solution. Also the integral, Eq. (14), is insensitive to 
the exact form of Q, which is in any case closely prescribed by the two turning points. 
Wowever, the integral is often a sensitive function of the phase and magnitude of CO, 
thus leading to an accurate determination. In the case of the example of Fig. 3, am 
expansion about z = 0 leads to the approximate harmonic potential QIL = L - 
w  - Lz-“, giving w  = L[l - (2~ + l)/L1l’]. For n = Q, L = 100 this gives u)” = 90. 
Using the complete form, Q = L/(1 + z”) - w, the code described here converges 
to w  = 90.2, and a direct numerical integration of the differential equation gives 
w  = 90.7. 
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For the physical interpretation of the solution and the understanding of 
the boundary conditions, it is necessary to recall the derivation of the original 
equation, which is normally through Fourier Laplace transformation of a time 
dependent equation. The solution for fixed a has the form #(x) exp(-iwt). In this 
particular case the differential equation is self adjoint, there are no sources or sinks 
of energy, and this is reflected in the Stokes diagram by the fact that the asymptotic 
x axis exactly coincides with a Stokes line; i.e., the solution is asymptotically expo- 
nentially damped in space, with no propagation in or out. In Section III we present 
examples in which the differential equation is not self adjoint, and a solution necessi- 
tates asymptotic propagation. 

The canonical two turning point Stokes structure shown in Fig. 3 is the pattern 
that one must search for in a standard eigenvalue problem. In the case of an alge- 
braically complicated function Q(z, w), perhaps dependent on several physical para- 
meters, the job of analyzing the Stokes structure associated with Eq. (1) for all 
physically interesting parameter values can be quite tedious. Further, the global 
properties of Stokes regions can change drastically for small changes in the eigenvalue 
W. Thus a means of rapidly exploring this structure in order to ascertain the possi- 
bility of the existence of a mode, and in case such a possibility exists to iteratively 
find the associated frequency w is extremely useful. 

III. THE NUMERICAL SEARCH FOR WKBJ SOLUTIONS 

A. General Description 

The code developed can be used to analyze any differential equation of the form of 
Eq. (l), and in particular to iteratively find the eigenfrequencies associated with par- 
ticular solutions. It is written in Fortran, and application to a specific problem only 
involves inserting the lines necessary to construct the function Q(w, z). 

It is written for interactive use on a console with a screen for plotting. Upon 
execution of the code, an initial guess for the frequency must be entered and the 
resulting Stokes structure (local anti-Stokes lines) is displayed. In general, there may 
be present a number of singular points of various type. If no turning points likely 
to give a solution of the form desired are observed, a new frequency guess is made 
and the new Stokes structure is displayed. When a likely pair of turning points are 
observed, their approximate locations are entered, and the code then locates them to 
the desired degree of accuracy. Then the integral Eq. (14) is evaluated between these 
points and the result is displayed. At this point, the desired mode number can be 
selected, and the code then proceeds to find the correct eigenfrequency iteratively, 
displaying the resulting Stokes structure, the integration path, the integrand, and the 
path of the search in the frequency plane. For efficient use of the code, these must all 
be observed and made use of to arrive quickly at a solution. A more detailed descrip- 
tion of the use of this output has been given in a short guide to the actual operation 
of the code. [6] 
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The search routine for the frequency consists of stepping the frequency, by an 
entered amount, four different directions in the complex plane, and for each step 
finding the new zeros of Q(z, w), calculating the integral, and comparing it to the 
integral obtained with the original w. The best resulting w  in terms of satisfying 
Eq. (14) is then selected for the next iteration. In case none of these stepped values 
result in a better solution of Eq. (14) than the original vaiue, which will certainly 
occur when w  is very near the correct eigenvalue, the step distance is decreased and 
the search is repeated. When improvement of the eigenvalue is impossible, due to 
errors occurring from the finite number of integration points and the limited accuracy 
with which the zeros of Q(z, CXJ) are found, the frequency search routine will fail and 
the routine will terminate. 

In some cases the turning point locations can be very sensitive factions of cr), 
and a large step in CO will cause them to be lost. The search for the zeros of Q(Z) and 
the integration paths are displayed on the Stokes diagram during the four-way 
frequency search, so that if this problem occurs it will be apparenl and a smaller 
value for the frequency step can be selected. 

During operation the plot of the integrand indicates how accurately the zeros of 
Q(z, CO) are being found; if it is not relatively small at the end points, the acceptable 
error must be reduced. A sample plot of the integrand is shown in Fig. 4. This plot 
as well as the Stokes plot warns of the presence of zeros or singularities near the 
integration path. This is relevant since the integration path must be analytically 
continuable to a path following the anti-Stokes lines connecting the two turning points. 
In Fig. 5 is shown, with a dotted line, a typical (straight line) integration path joining 

I NTEGRATION PO! NTS 
FIG. 4. A typical plot of the integrand Q w dz for w nearby a solution. The integrand rn:sst be 

relatively small at the end points, otherwise the accuracy of the turning point location m:~r be 
improved. 
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FIG. 5. The Stokes diagram for the initial frequency guess for the equation of Example 1. The 
dashed line connecting the two-turning points is the integration path. 

the two turning points. Similarly, the cut structure of [Q(z, c~)]l/~ must be taken into 
account in the continuation of the solution from one region to the next. 

The plot of the frequency plane search gives an indication of how rapidly the 
convergence to the correct eigenvalue is proceeding, and when a value has been 
bracketed it gives some indication of the accuracy of the determination. 

B. Example 1. 

Consider the simple example given by 

Q = -[(w2/2) + 13]/[z% + 0.7(1 - i)] - w. (15) 

This is an ad hoc equation which is illustrative of the type of problem encountered 
in plasma physics. The turning point locations and indeed the validity of the WKBJ 
approximation depend on the value of the eigenvalue w, and it is not a priori apparent 
whether or not solutions exist of the bound state form, nor whether they can be 
described by Phase Integral Methods. An initial guess of w = 3 + 7i gives the Stokes 
plot shown in Fig. 5. Two turning points exist, and it appears possible that a solution 
can be found which exhibits subdominant behavior for x --f f 03. Proceding with 
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FIG. 6. The Stokes diagram of Example 1 with w  equal to an eigenvalue (that for 17 = 2). 

the iteration, we find convergence to an eigenvalue associated with n = 2 of 
w  = - 1.69 + 8.31i. The Stokes structure corresponding to this correct eigenvalue 
is shown in Fig. 6. It is clear that subdominant solutions corresponding to those of 
regions 1, 6 of Fig. 3 include in their domain of validity the real a-xis for s + i a3. 
However, since the Stokes line does not coincide with the real axis, the solution will 
exhibit propagation. The physical boundary condition which must be imposed is 
that there be an outward group velocity for large x. We review here the consequences 
of this for the Stokes analysis. Assume for simplicity that & has a limit Qcc as x - GC 
as is the case in Example 1. This assumption is not essential but simplifies the analysis. 
Define k = (Qm)1/e= The WKBJ solutions for large x are #I~ - exp(+ikx). Form 
a wave packet using #+ , 4(x, t) = s dkf(k) exp(ikx - iwt> where J(k) has a small 
domain centered about k = k, . Expand w  in a Taylor series about k, givhg 

#(x, t) = exp(ik,x - iw,t) 
s 

dkf(k) exp{i(k - k,)[x - (dw/dk) t]:. (16) 

By standard stationary phase arguments #(x, t) is nonzero only in the neighborhood 
of x = (dwjdk) t and thus the group velocity is u, = dwldk. Thus $I+ is an outgoing 
wave for x > 0 and U, > 0. Now examine the spatial dependence of GT For large x. 
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If there are no sources or sinks of energy at large x, & is real for real W, and thus 
#+ is oscillatory with constant amplitude. If w  is complex, w  = W, + iy, #+ takes 
the form 

#+ w  exp[ik,x - (&/&J) yx] (17) 

and thus a wave with outgoing group velocity is spatially damped for y > 0 and 
spatially growing for y < 0. It is readily shown that this property holds for both signs 
of x and 21, ; i.e., at large x one must choose a subdominant solution for y > 0 and 
a dominant solution for y < 0. This behavior has a simple physical interpretation; 
information regarding the growth or decay of the mode propagates ou-tward with 
speed v, and thus the scale length associated with this growth or decay is given by 
vh 

The fact that the turning points are complex does not otherwise alter the analysis 
of the connection formula of Section II. The solution can be regarded as the same, 
only expressed in a coordinate system which has been rotated and somewhat skewed 
from that of Fig. 3. 

For this particular example the condition for the validity of the WKBJ solution, 
inequality (3), is fairly well satisfied everywhere on the real axis, as shown in Fig. 7. 

0.6/h 
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-4 -3 -2 -I 0 I 2 3 4 
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FIG. 7. The WKBJ condition (c/Q:‘~x)Q-~~~ along the real axis for the case of Fig. 6. This must 
be small compared to one for the validity of the WKBJ solutions. 
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C. Exampie 2. 

Consider the equation defined on the real axis by 

where 

A = (wRL)‘:“// I / 

and L, K, R are real parameters, and Z is the plasma dispersion function. This equation 
arises in plasma physics in the consideration of the collisionless drift wave. A more 
complete description of the derivation and solutions of this equation has been reported 
eiswhere, 17, S] for our purposes we may simply regard it as providing an example 
of interesting complexity. 

The expression 1 x / arises in a derivation valid on the real axis, and the analytic 
continuation into the complex plane is provided by 1 x / + (z9)l12. The physical real 
axis is determined by j x 1 3 0, and thus the physical plane is divided into two 
parts by branch cuts which can be taken along the imaginary axes. Thus for Re I’ > 0, 
I x 1 is replaced by z, and for Re z < 0, j x I is replaced by --1. The continuation of 
these functions through the cuts defines a second plane which we will refer to as the 
nonphysical plane. It is also divided into two distinct parts. For values of K much 
less than a critical value KC which depends on R and L (for R = l/l837 and L =50. 

KC = 0.36) there are two turning points located approximately along the line x =I -J’ 
in the physical plane. As K increases, these turning points begin to migrate toward 
the imaginary a.xis. In Fig. 8 is shown the location of the turning points (U and -U) 
for a mode with L = 50, K = 0.26, and R = l/1837. Note the presence of another 
pair of turning points (g and -gj, located in the nonphysical plane. Assume a 
decaying mode, in which case the solution for x -+ co (Region A of Fig, 8) must 
be dominant, C/J(Z) = (z, u)~. Continuing in toward .X = 0 (Region S) we cross a 
Stokes line associated with u (shown as a dotted line in Fig. 8) and thus the solution 
becomes $J(z> = (z, ~7)~ + i(o, zj, . The differential equation and the turning points 
under cunsideration are symmetric about -7 = 0, thus we can choose a solution with 
a particular parity with respect to -7 --f --z. For an odd solution we require $@) = 0.: 
or (0, ~3) + i(o, Oj = 0. This has the solution 2 Ii Q1’” & = [PI + (I/?)] 7;r, G odd. 
For the even solutions we require that d#/dz vanish ar z = 0, or $0, cj + (CI+ 0) = 0. 
This has the solution 2 Ji Q1i2 C& = [fz + (l/2)] z-, 11 even. Thus we obtain the standard 
connection formula between v, -v which for the parameters given above gives 
w = 0.908 - 0.008i. The mode is decaying in agreement with our initial assumption 
of a purely dominant solution for large X. Pt is readily verii-ied that the anti-Stokes 
line emanating from ZI toward positive x does not cross the real axis. 

As the parameter K increases, provided L > ?IR-~/~, the turning points C, --c ES 

well as the turning points g, -g approach the imaginary axis and coalesce for K = K, I 
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FIG. 8. The Stokes structure for a solution of the equation given in Example 2. Here K2 is less 
than the critical value for coalesence of U, g. The turning points g, -g correspond to a mode with 
positive growth located in the nonphysical plane. Their associated anti-Stokes lines are shown as 
dashed lines because of their location in the nonphysical plane. The mode in the physical plane 
associated with v, -LT is damped. Also partially shown (dotted line), is the Stokes line extending 
from v  which intersects the real axis. 

after which the Stokes diagram takes the form of Fig. 9. The role of turning point 
for the determination of the solution has been passed on from v to g. Once again the 
analysis presented above carries through, only now the connection formula is deter- 
mined by performing the integral from g to -g. We then discover that the growth 
rate Im(w) is zero, which can be verified analytically. If L < 3R-lia this coalescence 
does not occur for any value of K, and the mode continues to be determined by the 
turning point v. 

For K less than the critical value; i.e., with Stokes structure as shown in Fig. 8, 
imposing the connection formula between g and -g gives rise to a growing mode 
Im(o) > 0. However, this ghost mode remains in the nonphysical plane, interpretable 
as an outwardly propagating solution only in this plane. The critical value of K is 
seen to be the coalescense of the turning points of a nonphysical growing mode and 
a physical damped mode. The nonphysical turning point then dominates to produce 
a marginally stable mode for all larger values of K. 
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FIG. 9. The Stokes structure for a solution of the equation given in Example 2. Here X2 is larger 
than the critical value and the turning points are located on the imaginary axis. The mode is margm- 
ally stable. 
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